Abstract

Currents through batrachotoxin-modified sodium channels in frog myelinated fibres were measured under voltage-clamp conditions. Reversal potential (Erev) of steady-state currents is shown to be about 5 mV less positive than Erev of initial (peak) currents. Control experiments with procaine and tetrodotoxin in external solutions showed that this shift of Erev during depolarizing pulse cannot be accounted for by the presence of unmodified sodium channels, unblocked potassium channels, nonlinearity of the leakage or any changes in transmembrane gradients of current-carrying cations. "Instantaneous" current measurements showed that Erev becomes less positive as amplitude and duration of preliminary depolarization increase. The results obtained are consistent with assumption that sodium-potassium selectivity of the batrachotoxin-modified channels depends on potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.