Abstract

The interfacial structure between aqueous electrolytes and the epitaxial graphene on a SiC(0001) electrode has been determined using X-ray diffraction. The electrolyte and electrode potential dependences are investigated, and it is found that the water bilayer is stabilized on the graphene surface in a similar fashion to icelike structure. There are no specific adsorbed ions and no layer formation of electrolyte ions at the Helmholtz plane, which differs from the double-layer structure found on metal electrodes remarkably. The layer spacing of the water bilayer depends on the electrode potential, indicating that water reorientation occurs. The applied electrode potential is strongly related to the potential drop across the interface induced by the electric dipole field of the bilayer water. A small double-layer current results from non-faradaic charge by the reorientation of the bilayer water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call