Abstract
Neural crest cells (NCCs) are a multipotent embryonic cell population that contributes to the formation of various craniofacial structures including teeth. It has been generally believed that dental enamel is an ectodermal derivative, whereas the dentin–pulp complex and the surrounding supporting tissues originate from NCC-derived mesenchyme. These traditional concepts stem mainly from several early studies of fishes and amphibians. Recently, Wnt1-Cre/R26R mice, a mouse model for NCC lineage analysis, revealed the contribution of NCCs to mammalian tooth development. However, the discrepancy of expression patterns between different NCC-specific transgenic mouse lines makes it compulsory to revisit the cell lineage in mammalian tooth development. Here, we reevaluated the NCC lineage during mouse tooth development by using P0-Cre/R26R mice, another NCC-specific transgenic mouse line. Inconsistent with the traditional concepts, we observed the potential contribution of NCCs to developing enamel organ and enamel formation. We also demonstrated that the P0-Cre transgene was specifically expressed in migrating NCC in the hindbrain region, where NCC contributes to tooth, validating their applicability for NCC lineage analysis. Our unanticipated finding may change the general understanding of tooth development and provide new insights into dental stem cell biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.