Abstract

Assessment of the potential CO(2) emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO(2) reduction coefficient of bioethanol, and assessment model of CO(2) emission reduction potential of bioethanol are proposed and established to assess the potential CO(2) emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO(2) with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China's greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call