Abstract

Abstract Forests are believed to be a major sink for atmospheric carbon dioxide. There are 158.94 million hectares (Mha) of forests in China, accounting for 16.5% of its land area. These extensive forests may play a vital role in the global carbon (C) cycle as well as making a large contribution to the country’s economic and environmental well-being. Currently there is a trend towards increased development in the forests. Hence, accounting for the role and potential of the forests in the global carbon budget is very important. In this paper, we attempt to estimate the carbon emissions and sequestration by Chinese forests in 1990 and make projections for the following 60 years based on three scenarios, i.e. “baseline”, “trend” and “planning”. A computer model F-CARBON 1.0, which takes into account the different biomass density and growth rates for the forests in different age classes, the life time for biomass oxidation and decomposition, and the change in soil carbon between harvesting and reforestation, was developed by the authors and used to make the calculations and projections. Climate change is not modelled in this exercise. We calculate that forests in China annually accumulate 118.1 Mt C in growth of trees and 18.4 Mt in forest soils, and release 38.9 Mt, resulting in a net sequestration of 97.6 Mt C, corresponding to 16.8% of the national CO 2 emissions in 1990. From 1990 to 2050, soil carbon accumulation was projected to increase slightly while carbon emissions increases by 73, 77 and 84%, and net carbon sequestration increases by −21, 52 and 90% for baseline, trend and planning scenarios, respectively. Carbon sequestration by China’s forests under the planning scenario in 2000, 2010, 2030 and 2050 is approximately 20, 48, 111 and 142% higher than projected by the baseline scenario, and 8, 18, 34 and 26% higher than by the trend scenario, respectively. Over 9 Gt C is projected to accumulate in China’s forests from 1990 to 2050 under the planning scenario, and this is 73 and 23% larger than projected for the baseline and trend scenarios, respectively. During the period 2008–2012, Chinese forests are likely to have a net uptake of 667, 565 and 452 Mt C, respectively, for the planning, trend and baseline scenarios. We conclude that China’s forests have a large potential for carbon sequestration through forest development. Sensitivity analysis showed that the biggest uncertainty in the projection by the F-CARBON model came from the release coefficient of soil carbon between periods after harvesting and before reforestation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call