Abstract

ABSTRACT Depression is a severe disabling psychiatric illness and the pathophysiological mechanisms remain unknown. In previous work, we found the changes in extrinsic coagulation (EC) pathway proteins in depressed patients compared with healthy subjects were significant. In this study, we screened differentially expressed proteins (DEPs) in the EC pathway, and explored the molecular mechanism by constructing a protein-protein interaction (PPI) network. The DEPs of the EC pathwaywere initially screened by isobaric tags for relative and absolute quantification (iTRAQ) in plasma samples obtained from 20 depression patients and 20 healthy controls, and were then identified by Enzyme-linked immunosorbent assays (ELISAs). Ingenuity Pathway Analysis (IPA) software was used to analyse pathway. The differentially expressed genes (DEGs) were identified by analyzing the GSE98793 microarray data from the Gene Expression Omnibus database using the Significance Analysis for Microarrays (SAM, version 4.1) statistical method. Cytoscape version 3.4.0 software was used to construct and visualize PPI networks. The results show that Fibrinogen alpha chain (FGA), Fibrinogen beta chain (FGB), Fibrinogen gamma chain (FGG) and Coagulation factor VII (FVII) were screened in the EC pathway from depression patient samples. FGA, FGB, and FGG were significantly up-regulated, and FVII was down-regulated. Thirteen DEGs related to depression and EC pathways were identified from the microarray database. Among them NF-κB Inhibitor Beta (NFKBIB) and Heat shock protein family B (small) member 1 (HSPB1) were highly correlated with EC pathway. We conclude that EC pathway is associated with depression, which provided clues for the biomarker development and the pathogenesis of depression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call