Abstract
Sugar beet is one of the most economically important agricultural crops cultivated in many provinces of Turkey. Especially in recent years, there has been an increase in bacterial tuber rot due to factors related to climate change. In preliminary trials, soft rot disease by Pectobacterium caratovorum subsp. caratovorum (Pcc) and Pectobacterium betavasculorum (Pb) were detected predominantly in sugar beets in Central Anatolia. Today, some cultural measures and copper compounds are used against soft rot agents in sugar beet, but successful results cannot be obtained in preventing the disease. In this study, a total of 270 soil samples were taken from the rhizosphere of 10 different fields in 3 different periods in 3 different ecologically diverse districts (Çumra, Altınekin and Seydişehir) of Konya, one of the provinces with the highest amount of sugar beet production in Turkey. As a result of the isolations, a total of 3064 bacterial isolates were purified and 262 of them showed antibacterial activity against Pcc and Pb in vitro conditions. In addition, 15 antagonist bacteria with the highest inhibitory effect on the development of both pathogens were tested in greenhouse conditions, and according to the results obtained from here, 3 antagonists with the highest effect were tested in field conditions in the cultivation areas of 3 different districts named above. Biochemical, morphological and molecular diagnoses of antagonist bacteria with high efficacy were made. According to the results obtained, it has been concluded that rhizospheric bacteria with antagonistic effect have a success rate of 33-90% against Pcc and Pb pathogens, and that the biological products to be prepared in future studies can be used in ecological, climate friendly and within sustainable agricultural practices in sugar beet production areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Turkish Journal of Agriculture - Food Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.