Abstract

Several previous studies reported stimulatory effects on biogas process performance after trace metal supplementation. However, the regulation of the bioavailability in relation to chemical speciation, e.g. the role of sulfide is not fully understood. The objective of the present study was to determine the effect of sulfide on chemical speciation and bioavailability of Co and Ni in lab‐scale semicontinuous stirred biogas tank reactors treating stillage. The chemical forms and potential bioavailability of Co and Ni were studied by sequential extraction, analysis of acid‐volatile sulfide (AVS), and simultaneously extracted metals. The results demonstrated that Ni was completely associated to the organic matter/sulfide fraction and AVS, suggesting low potential bioavailability. Cobalt was predominantly associated to organic matter/sulfide and AVS, but also to more soluble fractions, which are considered to be more bioavailable. Process data showed that both Co and Ni were available for microbial uptake. Although the actual bioavailability of Co could be explained by association to more bioavailable chemical fractions, the complete association of Ni with organic matter/sulfides and AVS implies that Ni was taken up despite its expected low bioavailability. It was concluded that extensive Co‐ and Ni‐sulfide precipitation did not inhibit microbial uptake of Co and Ni in the reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.