Abstract
The test-negative design (TND) is a popular method for evaluating vaccine effectiveness (VE). A "classical" TND study includes symptomatic individuals tested for the disease targeted by the vaccine to estimate VE against symptomatic infection. However, recent applications of the TND have attempted to estimate VE against infection by including all tested individuals, regardless of their symptoms. In this article, we use directed acyclic graphs and simulations to investigate potential biases in TND studies of COVID-19 VE arising from the use of this "alternative" approach, particularly when applied during periods of widespread testing. We show that the inclusion of asymptomatic individuals can potentially lead to collider stratification bias, uncontrolled confounding by health and healthcare-seeking behaviors (HSBs), and differential outcome misclassification. While our focus is on the COVID-19 setting, the issues discussed here may also be relevant in the context of other infectious diseases. This may be particularly true in scenarios where there is either a high baseline prevalence of infection, a strong correlation between HSBs and vaccination, different testing practices for vaccinated and unvaccinated individuals, or settings where both the vaccine under study attenuates symptoms of infection and diagnostic accuracy is modified by the presence of symptoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.