ABSTRACT Recently, computer scientists have developed large language models (LLMs) by training prediction models with large-scale language corpora and human reinforcements. The LLMs have become one promising way to implement artificial intelligence with accuracy in various fields. Interestingly, recent LLMs possess emergent functional features that emulate sophisticated human cognition, especially in-context learning and the chain of thought, which were unavailable in previous prediction models. In this paper, I will examine how LLMs might contribute to moral education and development research. To achieve this goal, I will review the most recently published conference papers and ArXiv preprints to overview the novel functional features implemented in LLMs. I also intend to conduct brief experiments with ChatGPT to investigate how LLMs behave while addressing ethical dilemmas and external feedback. The results suggest that LLMs might be capable of solving dilemmas based on reasoning and revising their reasoning process with external input. Furthermore, a preliminary experimental result from the moral exemplar test may demonstrate that exemplary stories can elicit moral elevation in LLMs as do they among human participants. I will discuss the potential implications of LLMs on research on moral education and development with the results.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call