Abstract

Shaping has proven to be a powerful but precarious means of improving reinforcement learning performance. Ng, Harada, and Russell (1999) proposed the potential-based shaping algorithm for adding shaping rewards in a way that guarantees the learner will learn optimal behavior. In this note, we prove certain similarities between this shaping algorithm and the initialization step required for several reinforcement learning algorithms. More specifically, we prove that a reinforcement learner with initial Q-values based on the shaping algorithm's potential function make the same updates throughout learning as a learner receiving potential-based shaping rewards. We further prove that under a broad category of policies, the behavior of these two learners are indistinguishable. The comparison provides intuition on the theoretical properties of the shaping algorithm as well as a suggestion for a simpler method for capturing the algorithm's benefit. In addition, the equivalence raises previously unaddressed issues concerning the efficiency of learning with potential-based shaping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.