Abstract
There is often a large disparity between the size of a game we wish to solve and the size of the largest instances solvable by the best algorithms; for example, a popular variant of poker has about $10^{165}$ nodes in its game tree, while the currently best approximate equilibrium-finding algorithms scale to games with around $10^{12}$ nodes. In order to approximate equilibrium strategies in these games, the leading approach is to create a sufficiently small strategic approximation of the full game, called an abstraction, and to solve that smaller game instead. The leading abstraction algorithm for imperfect-information games generates abstractions that have imperfect recall and are distribution aware, using $k$-means with the earth mover's distance metric to cluster similar states together. A distribution-aware abstraction groups states together at a given round if their full distributions over future strength are similar (as opposed to, for example, just the expectation of their strength). The leading algorithm considers distributions over future strength at the final round of the game. However, one might benefit by considering the trajectory of distributions over strength in all future rounds, not just the final round. An abstraction algorithm that takes all future rounds into account is called potential aware. We present the first algorithm for computing potential-aware imperfect-recall abstractions using earth mover's distance. Experiments on no-limit Texas Hold'em show that our algorithm improves performance over the previously best approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.