Abstract

Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.

Highlights

  • Explosive volcanic eruptions pose proximal hazards by tephra fallout and can disperse fine ash and volcanic aerosols over vast areas of the globe thereby generating a threat to human health and infrastructures and causing long-range air traffic disruptions

  • The potential impact associated with volcanic ash from Antarctic eruptions is mainly contingent on volcano location and eruption column height (h)

  • Lower plumes (h < 10 km) from high-latitude (>70°) eruptive events are likely to be confined close to the South Pole due to moderated wind zones encircled by the polar jet stream, while higher plumes have a higher potential for transcontinental ash dispersal

Read more

Summary

Introduction

Explosive volcanic eruptions pose proximal hazards by tephra fallout and can disperse fine ash and volcanic aerosols over vast areas of the globe thereby generating a threat to human health and infrastructures and causing long-range air traffic disruptions. The potential risks, at regional and global scales, related to high southern latitude eruptions have never been assessed, albeit damage of Antarctic scientific stations due to volcanic hazards has been repeatedly reported in the past[7,8]. The outcomes of the present study draw attention to the need to perform dedicated hazard assessments on active Antarctic volcanoes, and are crucial to understanding ash distribution patterns at high southern latitudes. This latter aspect has obvious implications for tephrostratigraphic and chronologic studies that provide valuable isochrones to synchronize paleoclimate records. During the most recent explosive eruptions that occurred in 1967, 1969 and 1970, ash fall and lahars destroyed or severely damaged the scientific bases operating on the island at that time[4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call