Abstract

The paper addresses two potential applications for electrochemical ammonia oxidation within the operation of recirculating aquaculture systems, in which nearly complete removal of N species is required. In one described application, a physical–chemical ammonia oxidation method is suggested to entirely replace conventional biological treatment methods (i.e. nitrification/denitrification). The second described method is suggested as a final polishing step for removing ammonia from effluents of denitrification reactors supplied with intrinsic organic matter, prior to the discharge of the water. Empirical results and cost assessment are reported for the second alternative, while the first, which was recently published, is discussed with respect to improvements, operational conditions and field tests required to induce its commercial application. The polishing alternative was shown capable of efficiently removing TAN in the effluents of RAS denitrification reactors fed with intrinsic organic solids. The cost for treating denitrification reactor effluents with TAN concentration of 10mgN/L was estimated at 6.67cent/m3 of discharged water. Since the chloride ion concentration in seawater and in most brackish waters is high, combining the intrinsic organic carbon denitrification process with subsequent ammonia polishing by electrochemically produced active chlorine may be a competitive approach for the removal of nitrogen species from seawater and brackish water RAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.