Abstract

Proteomics represents the comprehensive study of cellular proteins and is aimed at analyzing their structure, function, expression, interactions, and localization in complex biological systems. The information obtained from these types of analyses can contribute to our understanding of the function of individual proteins by identifying proteinprotein interactions and dynamic protein networks found in normal and diseased conditions. Genomic (DNA) or transcriptomic (messenger RNA) approaches alone do not take into account changes in protein stability, localization, and posttranslational modifications that are often critical determinants of protein function and, by extension, cellular behavior. Although proteomic methods still require significant technical advances to provide a truly “global” or “comprehensive” measure of gene expression similar to that achieved by DNA microarrays, recent advances in proteomics are beginning to provide a means to simultaneously characterize the expression of thousands of proteins in a whole cell or biofluid proteome and hundreds of proteins in select subcellular structures or protein complexes. The information obtained from these studies should promote a better understanding of disease conditions,helptherapeuticdecisionmaking,andpotentiallyfostertheidentificationoftherapeutictargets

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.