Abstract

This paper presents a theoretical investigation on the performance of solar powered silica gel/water based adsorption cooling system working under climate conditions of the Middle East region. Actual solar data of Cairo and Aswan located, respectively, in the north and south of Egypt and the coastal city Jeddah on the Red Sea in Saudi Arabia are used in this study. Dynamic behavior of adsorption chillers driven by compound parabolic solar collector is presented. Two system configurations have been considered herein; (i) adsorption chiller is directly connected to the solar collectors, (ii) hot water buffer storage is installed between adsorption chiller and solar collectors. Temporal history of solar collector, sorption reactors, evaporator and condenser has been predicted. System performance in terms of cooling capacity, daily average cooling capacity, cycle COP and solar COP has been estimated. Results show that the maximum cyclic cooling capacity of the system working under Cairo and Jeddah climate conditions reaches about 14.8kW and about 15.8kW for Aswan climate conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.