Abstract

Osteoporosis is a systemic skeletal disease characterized by low bone mass, that can result in fracture when injury, for example, due to a traffic accident. This study aimed to identify secondary metabolites from Zingiber officinale that potentially inhibit cathepsin K, a critical enzyme that caused osteoporosis. In this study, a molecular docking of 102 bioactive compounds from Zingiber officinale against cathepsin K (PDB ID: 4X6I) was conducted. Ligand preparation was performed using JChem and Schrödinger’s software, and virtual protein was elucidated using AutoDockTools version 1.5.6. Cocrystal ligand was carried out as a positive control ligand. Pharmacokinetics of the compounds was predicted with SwissADME online tool. Based on the results, nine compounds had good binding affinity against cathepsin K. The compounds were shogasulfonic acid C, (-)-beta-sitosterol, shogasulfonic acid D, shogasulfonic acid B, shogasulfonic acid A, isogingerenone B, (S)-8-gingerol, gingerenone A, and hexahydrocurcumin, with binding affinities of -7.2, -7.0, -6.9, -6.8, -6.8, -6.7, -6.7, -6.6, and -6.4 kcal mol−1, respectively. Most compounds had great pharmacokinetic profiles and also drug-likeness properties. In conclusion, bioactive compounds from Zingiber officinale are potentially used as anti-osteoporosis agents targeting cathepsin K. However, in vitro and in vivo studies are needed to prove the anti-osteoporosis activity of these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.