Abstract

AbstractFlow processes with microstructured reactors allow paradigm changes in process development and thus can enable a faster development time to the final production plant. They do this by exploiting similarity effects along the development chain (modularity) and intensification. The final result can be a (significantly) reduced number of apparatus in the plant, a (significantly) reduced apparatus size, and a higher predictability in the scale‐out of the apparatus. So far, this was mainly achieved via transport intensification given in microstructured reactors – improved mixing and heat transfer which increase productivity and possibly improve selectivity. A more new idea is chemical intensification through deliberate use of harsh chemistries at unusual (high) pressure, temperature, concentration, and reaction environment which again increases productivity. A very new idea is the process design intensification – the reaction‐maximized flow processes need less separation expenditure and the small unit size together with the high degree in functionality gives large potential for system integration. Both means change and simplify the process scheme totally which can lead to a reduced number of apparatus and has impact on predictability. The modular nature of the small flow units allow an easy implementation to modern modular plant environments (Future Factories) which enables to perform all the testing cycles (lab, pilot, production) in one plant environment; an example are here container plants. All these measures have large potential for (much) decreased overall development time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call