Abstract

Lepidopteran larvae resist baculovirus infection by selective apoptosis of infected midgut epithelial cells and by sloughing off infected cells from the midgut. Once the infection breaches the midgut epithelial barrier and propagates from infective foci to the haemocoel, however, there are few mechanisms known to account for the resistance and clearance of infection observed in some virus-host combinations. The hypothesis that factors present in the plasma of infected pest larvae act to limit the spread of virus from initial infective foci within the haemocoel was tested. An in vitro bioassay was developed in which Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV) was incubated with plasma collected from uninfected Heliothis virescens larvae. Infectious HzSNPV particles were then titrated on HzAM1 cells. Diluted plasma from larval Heliothis virescens exhibited a virucidal effect against HzSNPV in vitro, reducing the TCID(50) ml(-1) by more than 64-fold (from 4.3+/-3.6x10(5) to 6.7+/-0.6x10(3)). The antiviral activity was heat-labile but was unaffected by freezing. In addition, protease inhibitors and specific chemical inhibitors of phenol oxidase or prophenol oxidase activation added to diluted plasma eliminated the virucidal activity. Thus, in the plasma of larval lepidopterans, the enzyme phenol oxidase may act as a constitutive, humoral innate antiviral immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.