Abstract

BackgroundThe TRIM5α protein is a principal restriction factor that contributes to an HIV-1 replication block in rhesus macaque CD4+ T cells by preventing reverse transcription. HIV-1 restriction is induced in human CD4+ T cells by expression of rhesus TRIM5α as well as those of other old world monkeys. While TRIM5α restriction has been extensively studied in single-round infection assays, fewer studies have examined restriction after extended viral replication.ResultsTo examine TRIM5α restriction of replication, we studied the ability of TRIM5α proteins from African green monkey (AgmTRIM5α) and gorilla (gorTRIM5α) to restrict HIV-1 and SIVmac239 replication. These xenogeneic TRIM5α genes were transduced into human Jurkat-CCR5 cells (JR5), which were then exposed to HIV-1 or SIVmac239. In our single-round infection assays, AgmTRIM5α showed a relatively modest 4- to 10-fold restriction of HIV-1 and SIVmac239, while gorTRIM5α produced a 2- and 3-fold restriction of HIV-1 and SIVmac239, respectively, consistent with the majority of previously published single-round studies. To assess the impact of these modest effects on infection, we tested restriction in replication systems initiated with either cell-free or cell-to-cell challenges. AgmTRIM5α powerfully restricted both HIV-1 and SIVmac239 replication 14 days after cell-free infection, with a ≥ 3-log effect. Moreover, expression of AgmTRIM5α restricted HIV-1 and SIVmac239 replication by 2-logs when co-cultured with infected JR5 cells for 12 days. In contrast, neither expression of gorTRIM5α nor rhesus TRIM5α induced significant resistance when co-cultured with infected cells. Follow up experiments showed that the observed differences between replication and infection were not due to assembly defects as xenogeneic TRIM5α expression had no effect on either virion production or specific infectivity.ConclusionsOur results indicate that AgmTRIM5α has a much greater effect on extended replication than on any single infection event, suggesting that AgmTRIM5α restriction acts cumulatively, building up over many rounds of replication. Furthermore, AgmTRIM5α was able to potently restrict both HIV-1 and SIV replication in a cell-to-cell infection challenge. Thus, AgmTRIM5α is unique among the TRIM5α species tested to date, being able to restrict even at the high multiplicities of infection presented by mixed culture with nonrestrictive infected cells.

Highlights

  • The TRIM5α protein is a principal restriction factor that contributes to an HIV-1 replication block in rhesus macaque CD4+ T cells by preventing reverse transcription

  • Ohkura et al found that N-tropic murine leukemia virus produced restriction resistant mutants in target cells expressing either human or rhesus TRIM5α only when co-cultured with unmodifed cells, indicating a low level of infection in the mixed cultures that was absent with the modified cells alone [66,67]

  • Using a dilution end-point replication assay, we find that AgmTRIM5α exhibits a greater than 103-fold level of restriction of HIV-1 and SIVmac239 replication in a transformed human CD4+ T-cell line when expressed at near physiological levels

Read more

Summary

Introduction

The TRIM5α protein is a principal restriction factor that contributes to an HIV-1 replication block in rhesus macaque CD4+ T cells by preventing reverse transcription. Studying cellular resistance to HIV-1 infection mediated by cellular proteins, i.e. resistance factors, is important for the understanding of viral biology and identifying potential opportunities for AIDS therapeutics [1,2,3,4,5,6,7,8,9,10] These cellular proteins interact with viral partners to block various steps in the retroviral replication cycle, thereby suppressing virus infection and spread [11]. The TRIM5α cytoplasmic body protein, was identified as a principal restriction factor for HIV-1 in rhesus macaque CD4+ T cells which binds the capsid protein (CA) in capsid cores after virus entry, thereby, interfering with early reverse transcription [18,19]. In many cases viral restriction in normally permissive cells can be produced by ectopic expression of

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call