Abstract
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and its variants has posed a serious global public health emergency. Therapeutic interventions or vaccines are urgently needed to treat and prevent the further dissemination of this contagious virus. This study described the identification of neutralizing receptor‐binding domain (RBD)‐specific antibodies from mice through vaccination with a recombinant SARS‐CoV‐2 RBD. RBD‐targeted monoclonal antibodies (mAbs) with distinct function and epitope recognition were selected to understand SARS‐CoV‐2 neutralization. High‐affinity RBD‐specific antibodies exhibited high potency in neutralizing both live and pseudotype SARS‐CoV‐2 viruses and the SARS‐CoV‐2 pseudovirus particle containing the spike protein S‐RBDV367F mutant (SARS‐CoV‐2(V367F)). These results demonstrated that these antibodies recognize four distinct groups (I–IV) of epitopes on the RBD and that mAbs targeting group I epitope can be used in combination with mAbs recognizing groups II and/or IV epitope to make mAb cocktails against SARS‐CoV‐2 and its mutants. Moreover, structural characterization reveals that groups I, III, and IV epitopes are closely located to an RBD hotspot. The identification of RBD‐specific antibodies and cocktails may provide an effective therapeutic and prophylactic intervention against SARS‐CoV‐2 and its isolates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.