Abstract

Apomorphine is a potent radical scavenger and iron chelator. In vitro apomorphine acts as a potent iron chelator and radical scavenger with IC50 of 0.3 microM for iron (2.5 microM) induced lipid peroxidation in rat brain mitochondrial preparation, and it inhibits mice striatal MAO-A and MAO-B activities with IC50 values of 93 microM and 241 microM. Apomorphine (1-10 microM) protects rat pheochromocytoma (PC12) cells from 6-hydroxydopamine (150 microM) and H2O2 (0.6 mM) induced cytotoxicity and cell death. The neuroprotective property of (R)-apomorphine, a dopamine D1-D2 receptor agonist, has been studied in the MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease. (R)-apomorphine (5-10 mg/kg, s.c.) pretreatment in C57BL mice, protects against MPTP (24 mg/kg, i.p.) induced loss of nigro-striatal dopamine neurons, as indicated by striatal dopamine content, tyrosine hydroxylase content and tyrosine hydroxylase activity. It is suggested that the neuroprotective effect of (R)-apomorphine against MPTP neurotoxicity derives from its radical scavenging and MAO inhibitory actions and not from its agonistic activity, since the mechanism of MPTP dopaminergic neurotoxicity involves the generation of oxygen radical species induced-oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.