Abstract

Types of polyketide synthase-terpenoid synthase (PKS-TPS) hybrid metabolites, including arthrosporols with significant morphological regulatory activity, have been elucidated from nematode-trapping fungus Arthrobotrys oligospora. A previous study suggested that the gene cluster AOL_s00215 in A. oligospora was involved in the production of arthrosporols. Here, we report that disruption of one cytochrome P450 monooxygenase gene AOL_s00215g280 in the cluster resulted in significant phenotypic difference and much aerial hyphae. A further bioassay indicated that the mutant showed a dramatic decrease in the conidial formation but developed numerous traps and killed 85% nematodes within 6 h in contact with prey, in sharp contrast to the wild-type strain with no obvious response. Chemical investigation revealed huge accumulation of three new PKS-TPS epoxycyclohexone derivatives with different oxygenated patterns around the epoxycyclohexone moiety and the absence of arthrosporols in the cultural broth of the mutant ΔAOL_s00215g280. These findings suggested that a study on the biosynthetic pathway for morphological regulatory metabolites in nematode-trapping fungus would provide an efficient way to develop new fungal biocontrol agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call