Abstract

Cotton is an important crop that is continuously cultivated around the world. However, its production has decreased in recent times due to wide ranging insects and also current practices of using synthetic insecticides that are not precise and their residues impairing the biodiversity. Hence, the search for newer classes of efficient entomotoxic proteins continues. Genetically modified cotton crops with cry genes from Bacillus thuringiensis, have been cultivated across the world, which overcome the chewing type insect menace. In the present study, we assess the development of transgenic cotton plants by Agrobacterium, wherein the confirmed kanamycin resistant T0 plants were advanced to T1 generation and the gene integration was studied by molecular analysis. Western blot and ELISA assays demonstrated the expression of 0.46% lectin of the total soluble leaf proteins. In planta bioassay showed 69% of aphid, Aphis gossypii population reduction with T1 generation plants. Whereas 100% insect mortality is occurred in Spodoptera litura larvae by 96 h. Present findings shows the potent insecticidal effect of Sclerotium rolfsii lectin on sucking (homopteran) and chewing (lepidopteron) insects, underlining its significance and strengthening genetic resources in cotton breeding against different order insect pests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call