Abstract

Due to its essential role in the virus life cycle, the viral regulatory protein Rev constitutes an attractive target for the development of new antiviral molecules. In this work, a series of Backbone Cyclic Peptide (BCP) analogs that bear a conformationally constrained arginine rich motif (ARM) of Rev were tested for in vitro inhibition of HIV-1 replication. We observed a potent suppression of HIV-1 replication in chronically infected T lymphocytic cells treated with Rev-BCPs. We further investigated possible mechanisms of HIV-1 inhibition and showed that Rev-BCPs interfere slightly with the nuclear import process and are very efficient in blocking a mechanism that controls Pr55(gag) and gp160(env) synthesis. Interestingly, these protein precursors are known to be encoded by mRNAs that require Rev-binding for nuclear export. In situ hybridization using a Cy-3 conjugated HIV-1 gag oligonucleotide probe indicated that Rev-BCPs prevent the intracellular accumulation of unspliced viral RNA. As a model, the most promising analog, Rev-BCP 14, was studied by molecular modeling and dynamics in order to identify its binding site on the Rev Response Element (RRE). The annealing simulation suggests that upon binding on the RRE, Rev-BCP 14 widens the distorted major groove of the viral RNA. Numerous contacts between peptide and RNA were found within the complex and some were identified as key components for the interactions. Altogether, our data indicate that the use of conformationally constrained Rev-BCPs represents a promising strategy for the development of new peptide-based therapeutic agents against HIV-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.