Abstract

BackgroundBecause Plasmodium falciparum displays increase tolerance against the recommended artemisinin combination therapies (ACT), new classes of anti-malarial drugs are urgently required. Previously synthesized artemisinin-aminoquinoline hybrids were evaluated to ascertain whether the potent low nanomolar in vitro anti-plasmodial activity would carry over in vivo against Plasmodium vinckei. A snapshot pharmacokinetic analysis was carried out on one of the hybrids to obtain an indication of the pharmacokinetic properties of this class of anti-malarial drugs.MethodsIn vitro activity of hybrids 2 and 3 were determined against the 3D7 strain of P. falciparum. Plasmodium vinckei-infected mice were treated with hybrids 1 – 3 for four days at a dosage of 0.8 mg/kg, 2.5 mg/kg, 7.5 mg/kg or 15 mg/kg intraperitoneally (ip), or orally (per os) with 2.7 mg/kg, 8.3 mg/kg, 25 mg/kg or 50 mg/kg. Artesunate was used as reference drug. A snapshot oral and IV pharmacokinetic study was performed on hybrid 2.ResultsHybrids 1 – 3 displayed potent in vivo anti-malarial activity with ED50 of 1.1, 1.4 and <0.8 mg/kg by the ip route and 12, 16 and 13 mg/kg per os, respectively. Long-term monitoring of parasitaemia showed a complete cure of mice (without recrudescence) at 15 mg/kg via ip route and at 50 mg/kg by oral route for hybrid 1 and 2, whereas artesunate was only able to provide a complete cure at 30 mg/kg ip and 80 mg/kg per os.ConclusionsThese compounds provide a new class of desperately needed anti-malarial drug. Despite a short half-life and moderate oral bioavailability, this class of compounds was able to cure malaria in mice at very low dosages. The optimum linker length for anti-malarial activity was found to be a diaminoalkyl chain consisting of two carbon atoms either methylated or unmethylated.

Highlights

  • Because Plasmodium falciparum displays increase tolerance against the recommended artemisinin combination therapies (ACT), new classes of anti-malarial drugs are urgently required

  • In vitro anti-malarial activity The in vitro anti-plasmodial activity was determined for hybrid 2 and 3 against the 3D7 strain of P. falciparum

  • The activity against the 3D7 strain resulted in similar values, when compared to the anti-plasmodial activity previously determined for these hybrids

Read more

Summary

Introduction

Because Plasmodium falciparum displays increase tolerance against the recommended artemisinin combination therapies (ACT), new classes of anti-malarial drugs are urgently required. Synthesized artemisinin-aminoquinoline hybrids were evaluated to ascertain whether the potent low nanomolar in vitro anti-plasmodial activity would carry over in vivo against Plasmodium vinckei. A snapshot pharmacokinetic analysis was carried out on one of the hybrids to obtain an indication of the pharmacokinetic properties of this class of anti-malarial drugs. Partial artemisinin resistance has emerged in western Cambodia and has the potential to spread to different parts of the region, subsequently becoming a global threat for malaria control and treatment. There are currently no alternative drugs to artemisinin derivatives [1,2,3]. The risk of treatment failure is reduced and the partner drug may be protected from the spread of resistance. The concept of the formation of a hybrid, especially in the treatment of malaria, has already been adopted by a number of groups [7,8,9,10,11,12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call