Abstract

BackgroundOptimal cell type as cell-based therapies for heart failure (HF) remains unclear. We sought to compare the safety and efficacy of direct intramyocardial transplantation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) in a porcine model of HF.MethodsEight weeks after induction of HF with myocardial infarction (MI) and rapid pacing, animals with impaired left ventricular ejection fraction (LVEF) were randomly assigned to receive direct intramyocardial injection of saline (MI group), 2 × 108 hESC-CMs (hESC-CM group), or 2 × 108 hiPSC-MSCs (hiPSC-MSC group). The hearts were harvested for immunohistochemical evaluation after serial echocardiography and hemodynamic evaluation and ventricular tachyarrhythmia (VT) induction by in vivo programmed electrical stimulation.ResultsAt 8 weeks post-transplantation, LVEF, left ventricular maximal positive pressure derivative, and end systolic pressure-volume relationship were significantly higher in the hiPSC-MSC group but not in the hESC-CM group compared with the MI group. The incidence of early spontaneous ventricular tachyarrhythmia (VT) episodes was higher in the hESC-CM group but the incidence of inducible VT was similar among the different groups. Histological examination showed no tumor formation but hiPSC-MSCs exhibited a stronger survival capacity by activating regulatory T cells and reducing the inflammatory cells. In vitro study showed that hiPSC-MSCs were insensitive to pro-inflammatory interferon-gamma-induced human leukocyte antigen class II expression compared with hESC-CMs. Moreover, hiPSC-MSCs also significantly enhanced angiogenesis compared with other groups via increasing expression of distinct angiogenic factors.ConclusionsOur results demonstrate that transplantation of hiPSC-MSCs is safe and does not increase proarrhythmia or tumor formation and superior to hESC-CMs for the improvement of cardiac function in HF. This is due to their immunomodulation that improves in vivo survival and enhanced angiogenesis via paracrine effects.

Highlights

  • Optimal cell type as cell-based therapies for heart failure (HF) remains unclear

  • There were no significant differences in the left ventricular ejection fraction (LVEF) measured by echocardiogram between the myocardial infarction (MI), human embryonic stem cells (hESCs)-CM, and hiPSC-MSC groups, respectively (Fig. 1a, b; 38.7% vs. 39.3% and 37.5%, P > 0.1 before cell transplantation)

  • There were no significant differences in LVEF among the three groups at baseline and during HF (Fig. 1b; P > 0.1)

Read more

Summary

Introduction

Optimal cell type as cell-based therapies for heart failure (HF) remains unclear. One of the potential reasons for the discordance in clinical efficacy between studies is the poor survival of transplanted cells and the innate diversity of cell number and populations yielded from BM stem cells in different patients [9]. In this regard, pluripotent stem cells, including cells derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) that are capable of high volume quality-controlled production, should provide more predictable therapeutic effects and “off-the-shelf” usage without the need for preparation

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.