Abstract

The synthesis of a series of novel 1-[(benzofuran-2-yl)phenylmethyl]-pyridine, -imidazole, and -triazole derivatives is described. All the compounds were evaluated in vitro for inhibitory activity against aromatase (P450(AROM), CYP19), using human placental microsomes. The 6-methoxy- and 6-hydroxy-substituted benzofuran derivatives were shown to be potent CYP19 inhibitors (IC(50) = 0.01-1.46 microM) with activity greater than that observed for the unsubstituted parent compounds and inhibitory activity comparable with or greater than the reference compound arimidex (IC(50) = 0.6 microM). Six of the benzofuran derivatives were subjected to in vitro cytotoxicity assays, using rat liver hepatocytes with cytotoxicity determined from alteration in cell morphology and lactate dehydrogenase enzyme retention over a period of 24 h, and selectivity (CYP17, 17beta-HSD types 1 and 3, CYP24, and CYP26) determination; negligible inhibitory activity was observed, suggesting a good selectivity for CYP19. The pyridine benzofuran 4a containing the 4-fluorophenyl group was the most promising (IC(50) = 44 nM; LC(50) >100 microM) compared with arimidex (IC(50) = 600 nM; LC(50) > 200 microM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.