Abstract

Virus-specific CD4(+) T cell responses have been shown to play a critical role in controlling HIV-1 replication. Candidate HIV-1 vaccines should therefore elicit potent CD4(+) as well as CD8(+) T cell responses. In this report we investigate the ability of plasmid GM-CSF to augment CD4(+) T cell responses elicited by an HIV-1 gp120 DNA vaccine in mice. Coadministration of a plasmid expressing GM-CSF with the gp120 DNA vaccine led to only a marginal increase in gp120-specific splenocyte CD4(+) T cell responses. However, immunization with a bicistronic plasmid that coexpressed gp120 and GM-CSF under control of a single promoter led to a dramatic augmentation of vaccine-elicited CD4(+) T cell responses, as measured by both cellular proliferation and ELISPOT assays. This augmentation of CD4(+) T cell responses was selective, since vaccine-elicited Ab and CD8(+) T cell responses were not significantly changed by the addition of GM-CSF. A 100-fold lower dose of the gp120/GM-CSF bicistronic DNA vaccine was required to elicit detectable gp120-specific splenocyte proliferative responses compared with the monocistronic gp120 DNA vaccine. Consistent with these findings, i.m. injection of the gp120/GM-CSF bicistronic DNA vaccine evoked a more extensive cellular infiltrate at the site of inoculation than the monocistronic gp120 DNA vaccine. These results demonstrate that bicistronic DNA vaccines containing GM-CSF elicit remarkably potent CD4(+) T cell responses and suggest that optimal Th cell priming requires the precise temporal and spatial codelivery of Ag and GM-CSF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call