Abstract

BackgroundBeta-site amyloid precursor protein cleaving enzyme (BACE-1) is a single-membrane protein belongs to the aspartyl protease class of catabolic enzymes. This enzyme involved in the processing of the amyloid precursor protein (APP). The cleavage of APP by BACE-1 is the rate-limiting step in the amyloid cascade leading to the production of two peptide fragments Aβ40 and Aβ42. Among two peptide fragments Aβ42 is the primary species thought to be responsible for the neurotoxicity and amyloid plaque formation that lead to memory and cognitive defects in Alzheimer’s disease (AD). AD is a ravaging neurodegenerative disorder for which no disease-modifying treatment is currently available. Inhibition of BACE-1 is expected to stop amyloid plaque formation and emerged as an interesting and attractive therapeutic target for AD.MethodsLigand-based computational approach was used to identify the molecular chemical features required for the inhibition of BACE-1 enzyme. A training set of 20 compounds with known experimental activity was used to generate pharmacophore hypotheses using 3D QSAR Pharmacophore Generation module available in Discovery studio. The hypothesis was validated by four different methods and the best hypothesis was utilized in database screening of four chemical databases like Maybridge, Chembridge, NCI and Asinex. The retrieved hit compounds were subjected to molecular docking study using GOLD 4.1 program.ResultsAmong ten generated pharmacophore hypotheses, Hypo 1 was chosen as best pharmacophore hypothesis. Hypo 1 consists of one hydrogen bond donor, one positive ionizable, one ring aromatic and two hydrophobic features with high correlation coefficient of 0.977, highest cost difference of 121.98 bits and lowest RMSD value of 0.804. Hypo 1 was validated using Fischer randomization method, test set with a correlation coefficient of 0.917, leave-one-out method and decoy set with a goodness of hit score of 0.76. The validated Hypo 1 was used as a 3D query in database screening and retrieved 773 compounds with the estimated activity value <100 nM. These hits were docked into the active site of BACE-1 and further refined based on molecular interactions with the essential amino acids and good GOLD fitness score.ConclusionThe best pharmacophore hypothesis, Hypo 1, with high predictive ability contains chemical features required for the effective inhibition of BACE-1. Using Hypo 1, we have identified two compounds with diverse chemical scaffolds as potential virtual leads which, as such or upon further optimization, can be used in the designing of new BACE-1 inhibitors.

Highlights

  • Beta-site amyloid precursor protein cleaving enzyme (BACE-1) is a single-membrane protein belongs to the aspartyl protease class of catabolic enzymes

  • The Feature Mapping protocol resulted in hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), ring aromatic (RA), positive ionizable (PI) and HY features

  • The first pharmacophore hypothesis (Hypo 1) is the best hypothesis characterized by the large cost difference (121.98 bits), lowest rootmean-squared difference (RMSD) value (0.804) and a high correlation coefficient of 0.977

Read more

Summary

Introduction

Beta-site amyloid precursor protein cleaving enzyme (BACE-1) is a single-membrane protein belongs to the aspartyl protease class of catabolic enzymes. Beta-site amyloid precursor protein cleaving enzyme (BACE-1), known as b-secretase, memapsin-2, or Aspartyl protease-2, is a single-membrane protein belongs to the aspartyl protease class of catabolic enzyme. This is one of the enzymes responsible for the sequential proteolysis of amyloid precursor protein (APP) [1]. The AD is a debilitating neurodegenerative disease that results in the irreversible loss of neurons, in the cortex and hippocampus [3] It is characterized by progressive decline in cognitive function that inevitably leading to incapacitation and death. Most of the designing of BACE-1 inhibitors are based on the transition state mimetic approach, which depends mainly on replacing the scissile amide bond of an appropriate substrate with a stable mimetic of the putative transition-state structure [10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.