Abstract

An aptamer targeting factor IXa has been evaluated in animal models and several clinical studies as a potential antithombotic therapy. We elucidate the molecular mechanism by which this aptamer acts as an anticoagulant. The aptamer binds tightly to factor IXa and prolongs the clotting time of human plasma. The aptamer completely blocks factor IXa activation of factor X regardless of the presence of factor VIIIa. However, the aptamer does not completely block small synthetic substrate cleavage, although it does slow the rate of cleavage. These data are consistent with the aptamer binding to the catalytic domain of factor IXa in such a way as to block an extended substrate-binding site. Therefore, unlike small molecule inhibitors, aptamers appear to be able to bind surfaces surrounding an active site and thereby sterically interfere with enzyme activity. Thus, aptamers may be useful agents to probe and block substrate-binding sites outside of the active site of an enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.