Abstract

We prove in particular that if G is a soluble group with no non-trivial locally finite normal subgroups, then G is p-potent for every prime p for which G has no Prüfer p-sections. (A group G is p-potent if for every power n of p and for any element x of G of infinite order or of finite order divisible by n there is a normal subgroup N of G of finite index such that the order of x modulo N is n. A Prüfer p-group is an infinite locally cyclic p-group.) This extends to soluble groups in general, and gives a more direct proof of, recent results of Azarov on polycyclic groups and soluble minimax groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.