Abstract

Regulatory decisions for skin sensitization are now based on adverse outcome pathway (AOP) and integrated approaches to testing and assessment (IATA). Based on these, Organisation for Economic Co-operation and Development (OECD) guidelines on defined approaches for skin sensitization were adopted with a fixed data interpretation procedure (DIP). In the guidelines, "Defined Approaches" (DA) on skin sensitization uses the results from multiple information sources of in chemico, in vitro, and in silico data to achieve an equivalent predictive capacity as those of the animal tests. In this review, we evaluated the skin sensitization of eleven isothiazolinone compounds including 4,5-Dichloro-2-octyl-3(2H)-isothiazolone (DCOIT), 2-n-Octyl-4-isothiazolin-3-one (OIT), 2-Methyl-4-isothiazolin-3-one (MIT), 1,2-Benzisothiazolin-3-one (BIT), 1,2-Benzisothiazolin-3-one, 2-butyl (BBIT), 5-Chloro-2-methyl-4-isothiazolin-3-one (CMIT), 2-methyl-4,5-trimethylene-4-isothiazolin-3-one (MTMIT), 2-methyl-1,2-benzothiazol-3-one (MBIT), 2-methyl-1,2-benzothiazole-3-thione (MBIT-S), 1,2-benzisothiazolin-3-one, 2-methyl-, 1,1-dioxide (BBIT-O), and a mixture of CMIT/MIT. Data from direct peptide reactivity assay (DPRA), human cell line activation (h-CLAT) test, and quantitative structure activity relationship (QSAR) Toolbox were evaluated and were applied to the DIP to derive a prediction of hazard identification and a potency classification. Among the evaluated chemicals, six isothiazolinone compounds were classified to be UN GHS 1A, one compound to be UN GHS 1, and four compounds could not be classified due to lack of data. The results of sensitizer chemicals were found to coincide well with those of in vivo test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call