Abstract

Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (p = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women.

Highlights

  • The regulation of skeletal muscle mass in healthy adults is driven largely by contractile activity and protein feeding

  • For the first time, that the ingestion of potato protein (PP) isolate resulted in increased rates of myofibrillar protein synthesis (MPS) when consumed at levels twice the recommended daily allowance (RDA) for protein in healthy young women

  • We report that the consumption of a twice-daily supplement of PP was able to augment rates of MPS above a baseline diet containing the RDA for protein (0.8 g/kg/day), and that rates of MPS were augmented above the ingestion of protein alone when combined with high-repetition

Read more

Summary

Introduction

The regulation of skeletal muscle mass in healthy adults is driven largely by contractile activity and protein feeding. 1-repetition maximum [1RM])—when performed to volitional fatigue—is able to stimulate comparable increases in MPS as high-load RE (i.e., 90% of 1RM), in healthy young adults; which has translated to Nutrients 2020, 12, 1235; doi:10.3390/nu12051235 www.mdpi.com/journal/nutrients. Leucine is able to independently stimulate MPS through its interaction with mTORC1 [11], and is critical for the determination of feeding-induced rates of MPS. Foods such as meat and dairy contain relatively higher quantities of leucine while containing a full complement of EAAs making them an effective supplemental protein source

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.