Abstract

Co-combustion experiments of rice straw with K, Si-riched rice straw and coal were conducted in a horizontal tube furnace at 600–1000°C. Potassium migration and transformation during co-combustion was investigated via analysis of combustion products by Inductively Coupled Plasma (ICP), X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM) and thermodynamic calculation software respectively. Results indicated that high temperature improved the release of K to the gaseous phase and promoted the generation of insoluble K compounds in the bottom ash. K in the rice straw mainly formed KCl, K2SiO3, while in both coal combustion and co-combustion was in the form of aluminosilicate. At 1000°C, a serious melting phenomenon was observed in ash of rice straw, bringing a decrease of K release while co-combustion could relieve this condition via increasing the melting temperature of ash effectively. The primary chemistry reaction during the co-combustion was Al migrated from coal ash to rice straw ash, forming relatively steady and high-melting point potassium aluminosilicate rather than potassium sulfate reported before. Furthermore, KCl(g) and K2CO3 were important predecessors to form K2SO4 and K2SiO3 in combustion by theory analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.