Abstract

Purple paddy soils are important for food production. Their potassium (K) supply capacity affects rice yields through its effect on nutrient availability. We hypothesize that changes in soil mineralogy can influence the K supply capacity and the efficiency of K fertilizer. Designing management practices that optimize crop yield while minimizing environmental impacts is a major challenge in agriculture. For this, it is necessary to understand the evolution of, and interaction of, minerals and different chemical forms of K in the soil system. Taking advantage of the long-term paddy cultivation history in China, two purple paddy soil chronosequences, one in Guang’an, Sichuan Province (P sequence) and the other in Longsheng, Guangxi Autonomous Region (PS sequence) in Southwest China, were investigated. Depotassification is prevalent in both paddy soil chronosequences, which is consistent with the decrease of illite and K-feldspar in the P sequence and with the decrease of muscovite in the PS sequence. K-bearing primary minerals are the long-term stable source of non-exchangeable K (interlayer K) in both chronosequences. Illite in clay fractions acts as the main sources of non-exchangeable K in the P sequence. In contrast, clay minerals derived from muscovite are the main sources of non-exchangeable K in the PS sequence. Clay mineral authigenesis is an important process in the purple paddy soils rich in K-bearing minerals. The changes in mineralogy of purple paddy soils do not conform to the usual sequence found in the well-drained natural soils. Artificial submergence promotes the conversion of mineral K (lattice-bound K) to non-exchangeable K and enhances the availability of mineral K. The disintegration of K-bearing primary minerals thus controls the K supply capacity in purple paddy soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call