Abstract

AbstractCarbon materials, owing to their low cost, high conductivity, and good thermal and chemical stability, have been deemed as a promising anode candidate for potassium‐ion batteries. However, anomalous low‐voltage discharge situations in crystalline carbon materials imply uncertainty in the potassium storage mechanism. Herein, an overlooked scenario, i.e., potassium metal underpotential deposition (PMUPD), is disclosed in crystalline carbon materials for the first time. The study unveils the induction of interlayer pores on desolvation and PMUPD by insights from thermodynamics, kinetics, and experimental analyses. By manipulating the cutoff voltage to utilize partial PMUPD, a novel synergistic mechanism of co‐intercalation and PMUPD is revealed. A remarkable initial coulombic efficiency of 92% and a 65% capacity retention at 30C (80 mAh g−1) are realized in crystalline carbon anode. This work provides a new insight into the potassium storage mechanism of carbon anode and contributes to further research and application of the UPD behavior in other alkaline metal ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.