Abstract

Potassium (K) and other moderately volatile elements are depleted in many solar system bodies relative to CI chondrites, which closely match the composition of the Sun. These depletions and associated isotopic fractionations were initially believed to result from thermal processing in the protoplanetary disk, but so far, no correlation between the K depletion and its isotopic composition has been found. Our new high-precision K isotope data correlate with other neutron-rich nuclides (e.g., 64Ni and 54Cr) and suggest that the observed 41K variations have a nucleosynthetic origin. We propose that K isotope anomalies are inherited from an isotopically heterogeneous protosolar molecular cloud, and were preserved in bulk primitive meteorites. Thus, the heterogeneous distribution of both refractory and moderately volatile elements in chondritic meteorites points to a limited radial mixing in the protoplanetary disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.