Abstract

As a metal-free nitrogen reduction reaction (NRR) photocatalyst, g-C3 N4 is available from a scalable synthesis at low cost. Importantly, it can be readily functionalized to enhance photocatalytic activities. However, the use of g-C3 N4 -based photocatalysts for the NRR has been questioned because of the elusive mechanism and the involvement of N defects. This work reports the synthesis of a g-C3 N4 photocatalyst modified with cyano groups and intercalated K+ (mCNN), possessing extended visible-light harvesting capacity and superior photocatalytic NRR activity (NH3 yield: 3.42 mmol g-1 h-1 ). Experimental and theoretical studies suggest that the -C≡N in mCNN can be regenerated through a pathway analogous to Mars van Krevelen process with the aid of the intercalated K+ . The results confirm that the regeneration of the cyano group not only enhances photocatalytic activity and sustains the catalytic cycle, but also stabilizes the photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.