Abstract

The influence of potassium (K) on the hydrogen (H) adsorption on graphene (G) was studied by means of density functional theory with the generalized gradient approximation. The structural parameters, bonding and magnetic properties of one and two H atoms interacting with potassium doped graphene (H–K/G and 2H–K/G) are calculated for different energetically stable configurations. We found a charge transfer from K atom towards G even when the H atom pairs are adsorbed. This behavior is obtained for all the configurations studied here. The binding energy per H atom is greater in the most stable 2H–K/G arrangement than in both H–K/G and H/G systems. The present results suggest that the hydrogen atom binding energy on graphene layer could increase up to 82% due to the pre-adsorption of potassium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.