Abstract
Soil salinity pollution is increasing worldwide, seriously affecting plant growth and crop production. Existing reports on how potassium indole-3-butyric acid (IBAK) regulates rice salt stress adaptation by affecting rice carbon metabolism, transcription factor (TF) genes expression, and biosynthesis of secondary metabolites still have limitations. In this study, an IBAK solution at 40 mg L-1 was sprayed on rice leaves at the seedling stage. The results showed that the IBAK application could promote shoot and root growth, decrease sucrose and fructose content, increase starch content, and enhance acid invertase (AI) and neutral invertase (NI) activity under salt stress, indicating altered carbon allocation. Furthermore, the expression of TF genes belonging to the ethylene responsive factor (ERF), WRKY, and basic helix-loop-helix (bHLH) families was influenced by IBAK. Many key genes (OsSSIIc, OsSHM1, and OsPPDKB) and metabolites (2-oxoglutaric acid, fumaric acid, and succinic acid) were upregulated in the carbon metabolism pathway. In addition, this study highlighted the role of IBAK in regulating the biosynthesis of secondary metabolites pathway, potentially contributing to rice stress adaptability. The results of this study can provide new sustainable development solutions for agricultural production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.