Abstract

Potassium influx and cellular [K+] were measured in the unicellular green alga Chlamydomonas reinhardtii after pretreatment in either 10 or 0 mM external K+ ([K]0). K+ (42K+ or 86Rb+) influx was mediated by a saturable, high-affinity transport system (HATS) at low [K+]0 and a linear, low-affinity transport system at high [K+]o. The HATS was typically more sensitive to metabolic inhibition (and darkness) than the low-affinity transport system. Membrane electrical potentials were determined by measuring the equilibrium distribution of tetraphenylphosphonium. These values, together with estimates of cytoplasmic [K+] (B. Malhotra and A.D.M. Glass [1995] Plant Physiol 108: 1537-1545), demonstrated that at 0.1 mM [K+]0 K+ uptake must be active. At higher [K+]0 (>0.3 mM) K+ influx appeared to be passive and possibly channel mediated. When cells were deprived of K+ for 24 h, the Vmax for the HATS increased from 50 x 10-6 to 85 x 10-6 nmol h-1 cell-1 and the Km value decreased from 0.25 to 0.162 mM. Meanwhile, cellular [K+] declined from 24 x 10-6 to 9 x 10-6 nmol cell-1. During this period influx increased exponentially, reaching its peak value after 18 h of K+ deprivation. This increase of K+ influx was not expressed when cells were exposed to inhibitors of protein synthesis. The use of 42K+ and 86Rb+ in parallel experiments demonstrated that Chlamydomonas discriminated in favor of K+ over Rb+, and this effect increased with the duration of K+ deprivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.