Abstract

Primary isolates of smooth muscle cells from the basilar artery of the rat were studied using whole-cell and single-channel patch-clamp techniques. Two distinct potassium currents were characterized. With low intracellular calcium, depolarization above 0 mV elicited an outward current of a few hundred pA (at +120 mV) with sigmoidal onset and little inactivation during 1.25 s steps. This current was reduced by bath application of 1 mM procaine or 1 mM strychnine, but not by 500 nM charybdotoxin. These are characteristics of the delayed rectifier potassium current in other preparations. With higher intracellular calcium, depolarization above 0 mV elicited a non-inactivating potassium current of several nA (at +120 mV). This current persisted in the presence of 1 mM procaine or strychnine but was reduced by bath application of 100 nM charybdotoxin. In whole-cell recordings in which intracellular calcium was unbuffered with EGTA, spontaneous transient outward currents were manifest and displayed voltage dependence and tail currents similar to the calcium-dependent current. The spontaneous transient current and the calcium-dependent current had similar sensitivity to charybdotoxin. Cell-free membrane patches contained one or more channels of 220 pS (in solutions symmetrical with respect to potassium) with similar voltage and calcium dependence. These are characteristics of the large conductance calcium-activated potassium current in other preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.