Abstract
1. The kinetics of delayed rectifier (IK) and transient potassium (IA) currents and their modification by intracellular calcium ions in bursting X-organ neurons of the crayfish were studied with whole-cell patch-clamp technique. Activation and inactivation kinetics were analyzed according to Hodgkin and Huxley-type equations. 2. IK activates with sigmoidal time course at membrane potentials more positive than -38.4 +/- 3.5 (SD) mV (n = 5), and does not inactivate. The conductance through delayed rectifier channels (gK) is described by the equation gK = GKn2. 3. IA activates at membrane potentials close to the resting potential (-52.2 +/- 4.3 mV, n = 5) and, after a peak, inactivates completely. The conductance through A-channels (gA) can be described by the product of independent activation and inactivation parameters: gA = GAa4b. Both activation and inactivation processes are voltage and time dependent. 4. Steady-state activation of IK and IA as well as inactivation of IA can be described by Boltzmann distributions for single particles with valencies of 2.55 +/- 0.01 (n = 5), 1.60 +/- 0.25 (n = 5), and 3.87 +/- 0.39 (n = 3), respectively. 5. Increasing [Ca2+]i, we observed the following: 1) a considerable inactivation of IK during test pulses, 2) an increase of maximal conductance for IA, 3) a reduction of the valency of IA inactivation gating particle (from 3.87 to 2.27), 4) a reduction of the inactivation time constants of IA, and 5) a shift of the inactivation steady-state curve to more positive membrane potentials.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.