Abstract

In this study, effects of mechanical activation in the chlorination roasting and water leaching route known as CaCl2 process and developed for the production of potassium chloride (KCl) from potassium feldspar ores were studied. A microcline containing K-feldspar ore with 10.89% K2O was first intensively dry milled by a planetary ball mill and mixed with calcium chloride (CaCl2) and then roasted at temperatures up to 1000 °C to obtain KCl that will be finally dissolved by the water leaching. Potassium recovery by water leaching increased rapidly up to 800 °C. At higher temperatures, the recovery decreased fast due to the evaporation of KCl. According to the K recovery values per unit energy consumed, the optimum roasting temperature was determined as 750 °C and the milling time was 15 min. It was concluded that intensive milling causes mechanical activation of the microcline to reduce the chlorination roasting temperature, which triggers a rise in the K recovery by the water leaching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.