Abstract

Epidermal growth factor (EGF)-induced proliferation of corneal epithelial cells contributes to its renewal, which maintains the protective and refractive properties of the cornea. This study characterized in human corneal epithelial cells (HCEC) the role of the potassium–chloride cotransporter (KCC) in mediating (i) EGF-induced mitogen-activated protein kinase (MAPK) pathway activation; (ii) increases in cell cycle progression; and (iii) proliferation. The KCC inhibitor [(dihydroindenyl)oxy] alkanoic acid (DIOA) and KCC activator N-ethylmaleimide (NEM), suppressed and enhanced EGF-induced p44/42MAPK activation, respectively. Such selective modulation was mirrored by corresponding changes in cell proliferation and shifts in cell cycle distribution. DIOA induced a 20% increase in G0/G1-phase cell population, whereas NEM induced a 22% increase in the proportion of cells in the G2/M-phase and accelerated the transition from G0/G1-phase to the S-phase. Associated with these changes, KCC1 content in a plasma membrane enriched fraction increased by 300%. Alterations in regulatory volume capacity were associated with corresponding changes in both KCC1 membrane content and activity. These results indicate that EGF-induced increases in KCC1 activity and content modulate cell volume changes required for (i) activation of the p44/42MAPK signaling pathway, (ii) cell cycle progression, and (iii) increases in cell proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.