Abstract

Maintaining the proper balance between cell apoptosis and proliferation is required for normal tissue homeostasis; when this balance is disrupted, disease such as pulmonary arterial hypertension (PAH) can result. Activity of K(+) channels plays a major role in regulating the pulmonary artery smooth muscle cell (PASMC) population in the pulmonary vasculature, as they are involved in cell apoptosis, survival and proliferation. PASMCs from PAH patients demonstrate many cellular abnormalities linked to K(+) channels, including decreased K(+) current, downregulated expression of various K(+) channels, and inhibited apoptosis. K(+) is the major intracellular cation, and the K(+) current is a major determinant of cell volume. Apoptotic volume decrease (AVD), an early hallmark and prerequisite of programmed cell death, is characterized by K(+) and Cl(-) efflux. In addition to its role in AVD, cytosolic K(+) can be inhibitory toward endogenous caspases and nucleases and can suppress mitochondrial cytochrome c release. In PASMC, K(+) channel activation accelerates AVD and enhances apoptosis, while K(+) channel inhibition decelerates AVD and inhibits apoptosis. Finally, inhibition of K(+) channels, by increasing cytosolic [Ca(2+)] as a result of membrane depolarization-mediated opening of voltage-dependent Ca(2+) channels, leads to PASMC contraction and proliferation. The goals of this review are twofold: (1) to elucidate the role of K(+) ions and K(+) channels in the proliferation and apoptosis of PASMC, with an emphasis on abnormal cell growth in human and animal models of PAH, and (2) to elaborate upon the targeting of K(+) flux pathways for pharmacological treatment of pulmonary vascular disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.