Abstract

A primary source of calcium (Ca2+) necessary for excitation contraction in vascular smooth muscle (VSM) is influx via voltage-dependent Ca2+ channels. Thus, force generation in VSM is coupled closely to resting transmembrane potential, which itself is primarily a function of potassium conductance. Previously, the authors reported that volatile anesthetics hyperpolarize VSM of small mesenteric resistance arteries and capacitance veins. The current study was designed to determine whether isoflurane-mediated hyperpolarization is the result of specific effects on one or more of four types of potassium channels known to exist in VSM. Transmembrane potentials (Em) were recorded from in situ mesenteric capacitance and resistance vessels in Sprague-Dawley rats weighing 250-300 g. In separate experiments, selective inhibitors of each of four types of potassium channels known to exist in VSM were administered in the superfusate of the vessel preparations to assess their effects on isoflurane-mediated hyperpolarization. Resting VSM Em ranged from -38 to -43 mV after local sympathetic denervation. Isoflurane produced a significant hyperpolarization (2.7-4.3 mV), whereas each potassium channel inhibitor significantly depolarized (2.8-8.5 mV) the VSM. Both 100 nM iberiotoxin (inhibitor of high conductance calcium-activated potassium channels) and 1 microM glybenclamide (inhibitor of adenosine triphosphatase-sensitive potassium channels) significantly inhibited VSM hyperpolarization induced by 1 MAC (minimum alveolar concentration) levels of inhaled isoflurane (0.1-0.9 mV Em change, which was not significant). In contrast, isoflurane hyperpolarized the VSM significantly despite the presence of 3 mM 4 aminopyridine (inhibitor of voltage-dependent potassium channels) or 10 microM barium chloride (an inhibitor of inward rectifier potassium channels) (3.7-8.2 mV change in VSM Em). These results suggest that isoflurane-mediated hyperpolarization (and associated relaxation) of VSM can be attributed in part to an enhanced (or maintained) opening of calcium-activated and adenosine triphosphate-sensitive potassium channels but not voltage-dependent or inward rectifier potassium channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.