Abstract
ABSTRACT Increasing exchangeable potassium (ExK) content in soil to an appropriate level is important to mitigate the transfer of radioactive cesium to crops. We focused on a buckwheat (Fagopyrum esculentum Moench) field with a low ExK content, despite the application of K, in Fukushima Prefecture, Japan (Field A), following the Tokyo Electric Power Company Fukushima Dai-ichi (No. 1) Nuclear Power Plant accident in March 2011. We examined the relationship between K concentration and clay mineral composition in the soil of Field A and compared the findings with another field in Fukushima Prefecture (Field B) to clarify whether K applied to the soil was leached or remaining fixed. Pot experiments showed that K concentration in water seepage from pots following irrigation was significantly lower in pots from Field A than in those from Field B. Soil ExK content after soybean cultivation was lower in soils of Field A than those of Field B. These results indicate that K applied to Field A was fixed in the soil. Analysis of clay mineral composition confirmed the distinctive vermiculitic nature of Field A soils. This clay mineralogy would be associated with the higher K fixation ability of Field A than Field B soils. This study demonstrated that K fixation in vermiculite was a factor preventing the increase in ExK content from K application to Field A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.