Abstract

Transient global ischemia induces CA1 hippocampal neuronal death without astrocyte death, perhaps mediated in part by the toxic translocation of zinc from presynaptic terminals to postsynaptic neurons. We tested the hypothesis that cellular depolarization, which occurs in the ischemic brain due to increased extracellular potassium and energy failure, might contribute to astrocyte resistance to zinc-induced death. We previously reported that neurons in mixed cortical neuronal-astrocyte cultures were more vulnerable to a 5-15-min exposure to Zn(2+) than astrocytes in the same cultures. In the present report, we show that (1) neurons in isolation or in conjunction with astrocytes were 2-3-fold more sensitive to a 15-min nondepolarizing Zn(2+) exposure than are glia; (2) KCl-induced depolarization attenuated glial vulnerability to zinc toxicity but potentiated neuronal vulnerability to zinc toxicity; (3) Zn(2+)-induced glial death was attenuated by T-type Ca(2+) channel blockade, as well as compounds that increase NAD(+) levels; and (4) both astrocytic (65)Zn(2+) accumulation and the increase in astrocytic [Zn(2+)](i) induced by Zn(2+) exposure were also attenuated by depolarization or T-type Ca(2+) channel blockers. Zn(2+)-induced cell death in astrocytes was at least in part apoptotic, as caspase-3 was activated, and the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone partially attenuated Zn(2+)-induced death. The levels of peak [Zn(2+)](i) achieved in astrocytes during this toxic nondepolarizing Zn(2+) exposure (250 nM) were substantially greater than those achieved in neurons (40 nM). In glia, exposure to 400 microM Zn(2+) induced a 13-mV depolarization, which can activate T-type Ca(2+) channels. This Zn(2+)-induced astrocyte death, like neuronal death, was attenuated by the addition of pyruvate or niacinamide to the exposure medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.